首页> 外文OA文献 >A Machine Learning Approach to Mapping Streaming Workloads to Dynamic Multicore Processors
【2h】

A Machine Learning Approach to Mapping Streaming Workloads to Dynamic Multicore Processors

机译:一种将流工作负载映射到动态多核处理器的机器学习方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dataflow programming languages facilitate the design of data intensive programs such as streaming applications commonly found in embedded systems. They also expose parallelism that can be exploited using multicore processors which are now part of the mobile landscape. In recent years a shift has occurred towards heterogeneity(e. g. ARM big.LITTLE) and reconfigurability. Dynamic Multicore Processors (DMPs) bridge the gap between fully reconfigurable processors and homogeneous multicore systems. They can re-allocate their resources at runtime to create larger more powerful logical processors fine-tuned to the workload.Unfortunately, there exists no accurate method to determine how to partition the cores in a DMP among application threads.Often programmers rely on analyzing the application manually and using a set of hand picked heuristics. This leads to sub-optimal performance, reducing the potential of DMPs. What is needed is a way to determine the optimal partitioning and grouping of resources to maximize performance.As a first step, this paper studies the effect of thread partitioning and hardware resource allocation on a set of StreamIt applications.We show that the resulting space is not trivial and exhibits a large performance variation depending on the combination of parameters.We introduce a machine-learning based methodology to tackle the space complexity. Our machine-learning model is able to directly predict the best combination of parameters using static code features. The predicted set of parameters leads to performanc eon-par with the best performance found in a space of more than 32,000 configurations per application.
机译:数据流编程语言有助于设计数据密集型程序,例如嵌入式系统中常见的流应用程序。它们还揭示了可使用现在已成为移动领域一部分的多核处理器加以利用的并行性。近年来,已经朝着异构性(例如ARM big.LITTLE)和可重新配置性转移。动态多核处理器(DMP)弥补了完全可重新配置的处理器和同类多核系统之间的鸿沟。他们可以在运行时重新分配资源以创建更大,更强大的逻辑处理器,以针对工作负载进行微调。不幸的是,目前尚无准确的方法来确定如何在应用程序线程之间划分DMP中的内核。程序员通常依赖于分析手动应用程序,并使用一组手动启发式方法。这导致性能欠佳,从而降低了DMP的潜力。首先需要确定一种优化资源分配和分组以最大化性能的方法。第一步,本文研究了线程划分和硬件资源分配对一组StreamIt应用程序的影响。并非微不足道,并且根据参数的组合表现出很大的性能差异。我们介绍了一种基于机器学习的方法来解决空间的复杂性。我们的机器学习模型能够使用静态代码功能直接预测参数的最佳组合。预测的参数集可在每个应用程序超过32,000个配置的空间中实现最佳性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号